Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed HMO1 gene.

Identifieur interne : 000881 ( Main/Exploration ); précédent : 000880; suivant : 000882

DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed HMO1 gene.

Auteurs : Arvind Panday [États-Unis] ; Ashish Gupta [États-Unis] ; Kavitha Srinivasa [États-Unis] ; Lijuan Xiao [États-Unis] ; Mathew D. Smith [États-Unis] ; Anne Grove [États-Unis]

Source :

RBID : pubmed:28701348

Descripteurs français

English descriptors

Abstract

The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The Saccharomyces cerevisiae high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition. We show here that Tor1p binds directly to the HMO1 gene (but not to genes that are not linked to ribosome biogenesis) and that the presence of Tor1p is associated with activation of gene activity. Persistent induction of DNA double-strand breaks or mTORC1 inhibition by rapamycin results in reduced levels of HMO1 mRNA, but only in the presence of Tor1p. This down-regulation is accompanied by eviction of Ifh1p and recruitment of Crf1p, followed by concerted dissociation of Hmo1p and Tor1p. These findings uncover a novel role for TOR kinase in control of gene activity by direct association with an RNA polymerase II-transcribed gene.

DOI: 10.1091/mbc.E17-01-0024
PubMed: 28701348
PubMed Central: PMC5576907


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed
<i>HMO1</i>
gene.</title>
<author>
<name sortKey="Panday, Arvind" sort="Panday, Arvind" uniqKey="Panday A" first="Arvind" last="Panday">Arvind Panday</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gupta, Ashish" sort="Gupta, Ashish" uniqKey="Gupta A" first="Ashish" last="Gupta">Ashish Gupta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Srinivasa, Kavitha" sort="Srinivasa, Kavitha" uniqKey="Srinivasa K" first="Kavitha" last="Srinivasa">Kavitha Srinivasa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Lijuan" sort="Xiao, Lijuan" uniqKey="Xiao L" first="Lijuan" last="Xiao">Lijuan Xiao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Smith, Mathew D" sort="Smith, Mathew D" uniqKey="Smith M" first="Mathew D" last="Smith">Mathew D. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grove, Anne" sort="Grove, Anne" uniqKey="Grove A" first="Anne" last="Grove">Anne Grove</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 agrove@lsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:regionArea>
<wicri:noRegion>Baton Rouge</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28701348</idno>
<idno type="pmid">28701348</idno>
<idno type="doi">10.1091/mbc.E17-01-0024</idno>
<idno type="pmc">PMC5576907</idno>
<idno type="wicri:Area/Main/Corpus">000776</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000776</idno>
<idno type="wicri:Area/Main/Curation">000776</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000776</idno>
<idno type="wicri:Area/Main/Exploration">000776</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed
<i>HMO1</i>
gene.</title>
<author>
<name sortKey="Panday, Arvind" sort="Panday, Arvind" uniqKey="Panday A" first="Arvind" last="Panday">Arvind Panday</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gupta, Ashish" sort="Gupta, Ashish" uniqKey="Gupta A" first="Ashish" last="Gupta">Ashish Gupta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Srinivasa, Kavitha" sort="Srinivasa, Kavitha" uniqKey="Srinivasa K" first="Kavitha" last="Srinivasa">Kavitha Srinivasa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Lijuan" sort="Xiao, Lijuan" uniqKey="Xiao L" first="Lijuan" last="Xiao">Lijuan Xiao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Smith, Mathew D" sort="Smith, Mathew D" uniqKey="Smith M" first="Mathew D" last="Smith">Mathew D. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grove, Anne" sort="Grove, Anne" uniqKey="Grove A" first="Anne" last="Grove">Anne Grove</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 agrove@lsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, Baton Rouge</wicri:regionArea>
<wicri:noRegion>Baton Rouge</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA Breaks, Double-Stranded (MeSH)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Down-Regulation (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>High Mobility Group Proteins (genetics)</term>
<term>High Mobility Group Proteins (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>RNA Polymerase I (genetics)</term>
<term>RNA Polymerase II (metabolism)</term>
<term>RNA, Ribosomal (metabolism)</term>
<term>Ribosomal Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (MeSH)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique (métabolisme)</term>
<term>Cassures double-brin de l'ADN (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Protéines HMG (génétique)</term>
<term>Protéines HMG (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines ribosomiques (métabolisme)</term>
<term>RNA polymerase I (génétique)</term>
<term>RNA polymerase II (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Régulation négative (MeSH)</term>
<term>Saccharomyces cerevisiae (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>High Mobility Group Proteins</term>
<term>RNA Polymerase I</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>High Mobility Group Proteins</term>
<term>RNA Polymerase II</term>
<term>RNA, Ribosomal</term>
<term>Ribosomal Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines HMG</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>RNA polymerase I</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN ribosomique</term>
<term>Facteurs de transcription</term>
<term>Protéines HMG</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines ribosomiques</term>
<term>RNA polymerase II</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Breaks, Double-Stranded</term>
<term>Down-Regulation</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Promoter Regions, Genetic</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cassures double-brin de l'ADN</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Régulation négative</term>
<term>Saccharomyces cerevisiae</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The
<i>Saccharomyces cerevisiae</i>
high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition. We show here that Tor1p binds directly to the
<i>HMO1</i>
gene (but not to genes that are not linked to ribosome biogenesis) and that the presence of Tor1p is associated with activation of gene activity. Persistent induction of DNA double-strand breaks or mTORC1 inhibition by rapamycin results in reduced levels of
<i>HMO1</i>
mRNA, but only in the presence of Tor1p. This down-regulation is accompanied by eviction of Ifh1p and recruitment of Crf1p, followed by concerted dissociation of Hmo1p and Tor1p. These findings uncover a novel role for TOR kinase in control of gene activity by direct association with an RNA polymerase II-transcribed gene.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28701348</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2017</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed
<i>HMO1</i>
gene.</ArticleTitle>
<Pagination>
<MedlinePgn>2449-2459</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E17-01-0024</ELocationID>
<Abstract>
<AbstractText>The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The
<i>Saccharomyces cerevisiae</i>
high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition. We show here that Tor1p binds directly to the
<i>HMO1</i>
gene (but not to genes that are not linked to ribosome biogenesis) and that the presence of Tor1p is associated with activation of gene activity. Persistent induction of DNA double-strand breaks or mTORC1 inhibition by rapamycin results in reduced levels of
<i>HMO1</i>
mRNA, but only in the presence of Tor1p. This down-regulation is accompanied by eviction of Ifh1p and recruitment of Crf1p, followed by concerted dissociation of Hmo1p and Tor1p. These findings uncover a novel role for TOR kinase in control of gene activity by direct association with an RNA polymerase II-transcribed gene.</AbstractText>
<CopyrightInformation>© 2017 Panday et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Panday</LastName>
<ForeName>Arvind</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gupta</LastName>
<ForeName>Ashish</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Srinivasa</LastName>
<ForeName>Kavitha</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Lijuan</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Mathew D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grove</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 agrove@lsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C103154">HMO1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006609">High Mobility Group Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012269">Ribosomal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D012319">RNA Polymerase II</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012318">RNA Polymerase I</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D053903" MajorTopicYN="Y">DNA Breaks, Double-Stranded</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006609" MajorTopicYN="N">High Mobility Group Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012318" MajorTopicYN="N">RNA Polymerase I</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012319" MajorTopicYN="N">RNA Polymerase II</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012269" MajorTopicYN="N">Ribosomal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>06</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28701348</ArticleId>
<ArticleId IdType="pii">mbc.E17-01-0024</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E17-01-0024</ArticleId>
<ArticleId IdType="pmc">PMC5576907</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2013;965:15-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23296649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2016 Nov 30;81(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27903656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2431-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2006 Oct;4(4):259-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2015 May 5;34(9):1214-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25770584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Apr 19;23(18):3151-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15094765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2014 Aug 1;28(15):1695-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics Chromatin. 2016 Mar 30;9:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27030801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23 (16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 May 1;137(3):445-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19410542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Oct;27(20):7007-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Oct 15;21(20):5498-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Apr;25(7):1171-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Aug 5;28(15):2220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2011 Dec 1;489(1):55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21924331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20543138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Dec;7(12 ):2078-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 Sep 15;29(18):1942-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26385964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Feb 9;24(3):533-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Nov;27(22):8015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17875934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 May;26(9):3672-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16612005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2017 May;53:15-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28336179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2014;13(5):714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24526113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Jul;26(13):4853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 May 21;3(5):e2223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18493323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Mar;18(3):953-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17192414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2016 Dec 5;594(1):108-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27601258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2009 May;10(3):198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19881913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Aug 8;134(3):451-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18692468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Mar 1;9(5):953-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20038818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 13;43(12 ):5759-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25979266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Louisiane</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Louisiane">
<name sortKey="Panday, Arvind" sort="Panday, Arvind" uniqKey="Panday A" first="Arvind" last="Panday">Arvind Panday</name>
</region>
<name sortKey="Grove, Anne" sort="Grove, Anne" uniqKey="Grove A" first="Anne" last="Grove">Anne Grove</name>
<name sortKey="Gupta, Ashish" sort="Gupta, Ashish" uniqKey="Gupta A" first="Ashish" last="Gupta">Ashish Gupta</name>
<name sortKey="Smith, Mathew D" sort="Smith, Mathew D" uniqKey="Smith M" first="Mathew D" last="Smith">Mathew D. Smith</name>
<name sortKey="Srinivasa, Kavitha" sort="Srinivasa, Kavitha" uniqKey="Srinivasa K" first="Kavitha" last="Srinivasa">Kavitha Srinivasa</name>
<name sortKey="Xiao, Lijuan" sort="Xiao, Lijuan" uniqKey="Xiao L" first="Lijuan" last="Xiao">Lijuan Xiao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000881 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000881 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28701348
   |texte=   DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed HMO1 gene.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28701348" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020